MOAFS: A Massive Online Analysis library for feature selection in data streams

Java Submitted 15 October 2019Published 23 January 2020
Review

Editor: @VivianePons (all papers)
Reviewers: @sptennak (all reviews), @DARSakthi (all reviews)

Authors

Matheus Bernardelli de Moraes (0000-0002-9485-0334), André Leon Sampaio Gradvohl (0000-0002-6520-9740)

Citation

de Moraes et al., (2020). MOAFS: A Massive Online Analysis library for feature selection in data streams. Journal of Open Source Software, 5(45), 1970, https://doi.org/10.21105/joss.01970

@article{de Moraes2020, doi = {10.21105/joss.01970}, url = {https://doi.org/10.21105/joss.01970}, year = {2020}, publisher = {The Open Journal}, volume = {5}, number = {45}, pages = {1970}, author = {Matheus Bernardelli de Moraes and André Leon Sampaio Gradvohl}, title = {MOAFS: A Massive Online Analysis library for feature selection in data streams}, journal = {Journal of Open Source Software} }
Copy citation string · Copy BibTeX  
Tags

feature selection data streams concept drift moa

Altmetrics
Markdown badge

 

License

Authors of JOSS papers retain copyright.

This work is licensed under a Creative Commons Attribution 4.0 International License.

Creative Commons License

Table of Contents
Public user content licensed CC BY 4.0 unless otherwise specified.
ISSN 2475-9066