aorsf: An R package for supervised learning using the oblique random survival forest

R C++ Submitted 06 August 2022Published 28 September 2022
Review

Editor: @danielskatz (all papers)
Reviewers: @danielskatz (all reviews)

Authors

Byron C. Jaeger (0000-0001-7399-2299), Sawyer Welden, Kristin Lenoir, Nicholas M. Pajewski

Citation

Jaeger et al., (2022). aorsf: An R package for supervised learning using the oblique random survival forest. Journal of Open Source Software, 7(77), 4705, https://doi.org/10.21105/joss.04705

@article{Jaeger2022, doi = {10.21105/joss.04705}, url = {https://doi.org/10.21105/joss.04705}, year = {2022}, publisher = {The Open Journal}, volume = {7}, number = {77}, pages = {4705}, author = {Byron C. Jaeger and Sawyer Welden and Kristin Lenoir and Nicholas M. Pajewski}, title = {aorsf: An R package for supervised learning using the oblique random survival forest}, journal = {Journal of Open Source Software} }
Copy citation string · Copy BibTeX  
Tags

machine learning supervised learning survival random forest

Altmetrics
Markdown badge

 

License

Authors of JOSS papers retain copyright.

This work is licensed under a Creative Commons Attribution 4.0 International License.

Creative Commons License

Table of Contents
Public user content licensed CC BY 4.0 unless otherwise specified.
ISSN 2475-9066