mikropml: User-Friendly R Package for Supervised Machine Learning Pipelines

R Submitted 03 December 2020Published 14 May 2021
Review

Editor: @arfon (all papers)
Reviewers: @JonnyTran (all reviews), @FedericoComoglio (all reviews)

Authors

Begüm D. Topçuoğlu (0000-0003-3140-537X), Zena Lapp (0000-0003-4674-2176), Kelly L. Sovacool (0000-0003-3283-829X), Evan Snitkin (0000-0001-8409-278X), Jenna Wiens (0000-0002-1057-7722), Patrick D. Schloss (0000-0002-6935-4275)

Citation

Topçuoğlu et al., (2021). mikropml: User-Friendly R Package for Supervised Machine Learning Pipelines. Journal of Open Source Software, 6(61), 3073, https://doi.org/10.21105/joss.03073

@article{Topçuoğlu2021, doi = {10.21105/joss.03073}, url = {https://doi.org/10.21105/joss.03073}, year = {2021}, publisher = {The Open Journal}, volume = {6}, number = {61}, pages = {3073}, author = {Begüm D. Topçuoğlu and Zena Lapp and Kelly L. Sovacool and Evan Snitkin and Jenna Wiens and Patrick D. Schloss}, title = {mikropml: User-Friendly R Package for Supervised Machine Learning Pipelines}, journal = {Journal of Open Source Software} }
Copy citation string · Copy BibTeX  
Tags

machine learning regression classification decision trees random forest xgboost support vector machines microbiology

Altmetrics
Markdown badge

 

License

Authors of JOSS papers retain copyright.

This work is licensed under a Creative Commons Attribution 4.0 International License.

Creative Commons License

Table of Contents
Public user content licensed CC BY 4.0 unless otherwise specified.
ISSN 2475-9066