pyABC: Efficient and robust easy-to-use approximate Bayesian computation

Python Mako Submitted 26 March 2022Published 25 June 2022
Review

Editor: @osorensen (all papers)
Reviewers: @mattpitkin (all reviews), @hpesonen (all reviews), @blakeaw (all reviews)

Authors

Yannik Schälte (0000-0003-1293-820X), Emmanuel Klinger, Emad Alamoudi (0000-0002-9129-4635), Jan Hasenauer (0000-0002-4935-3312)

Citation

Schälte et al., (2022). pyABC: Efficient and robust easy-to-use approximate Bayesian computation. Journal of Open Source Software, 7(74), 4304, https://doi.org/10.21105/joss.04304

@article{Schälte2022, doi = {10.21105/joss.04304}, url = {https://doi.org/10.21105/joss.04304}, year = {2022}, publisher = {The Open Journal}, volume = {7}, number = {74}, pages = {4304}, author = {Yannik Schälte and Emmanuel Klinger and Emad Alamoudi and Jan Hasenauer}, title = {pyABC: Efficient and robust easy-to-use approximate Bayesian computation}, journal = {Journal of Open Source Software} }
Copy citation string · Copy BibTeX  
Tags

approximate Bayesian computation ABC likelihood-free inference high-performance computing parallel sequential Monte Carlo

Altmetrics
Markdown badge

 

License

Authors of JOSS papers retain copyright.

This work is licensed under a Creative Commons Attribution 4.0 International License.

Creative Commons License

Table of Contents
Public user content licensed CC BY 4.0 unless otherwise specified.
ISSN 2475-9066