NLSIG-COVID19Lab: A modern logistic-growth tool (nlogistic-sigmoid) for descriptively modelling the dynamics of the COVID-19 pandemic process

Matlab Submitted 16 December 2020Published 06 April 2021
Review

Editor: @majensen (all papers)
Reviewers: @agahkarakuzu (all reviews), @kakearney (all reviews)

Authors

Oluwasegun A. Somefun (0000-0002-5171-8026), Kayode F. Akingbade, Folasade M. Dahunsi

Citation

Somefun et al., (2021). NLSIG-COVID19Lab: A modern logistic-growth tool (nlogistic-sigmoid) for descriptively modelling the dynamics of the COVID-19 pandemic process. Journal of Open Source Software, 6(60), 3002, https://doi.org/10.21105/joss.03002

Copy citation string · Copy BibTeX  
Tags

COVID-19 logistic function machine learning neural networks optimization regression epidemiology

Altmetrics
Markdown badge

 

License

Authors of JOSS papers retain copyright.

This work is licensed under a Creative Commons Attribution 4.0 International License.

Creative Commons License

Public user content licensed CC BY 4.0 unless otherwise specified.
ISSN 2475-9066