DeepReg: a deep learning toolkit for medical image registration

Python Submitted 01 September 2020Published 04 November 2020
Review

Editor: @Kevin-Mattheus-Moerman (all papers)
Reviewers: @ethanwharris (all reviews), @lbrea (all reviews), @zhangfanmark (all reviews)

Authors

Yunguan Fu (0000-0002-1184-7421), Nina Montaña Brown (0000-0001-5685-971X), Shaheer U. Saeed (0000-0002-5004-0663), Adrià Casamitjana (0000-0002-0539-3638), Zachary M. c. Baum (0000-0001-6838-335X), Rémi Delaunay (0000-0002-0398-4995), Qianye Yang (0000-0003-4401-5311), Alexander Grimwood (0000-0002-2608-2580), Zhe Min (0000-0002-8903-1561), Stefano B. Blumberg (0000-0002-7150-9918), Juan Eugenio Iglesias (0000-0001-7569-173X), Dean C. Barratt (0000-0003-2916-655X), Ester Bonmati (0000-0001-9217-5438), Daniel C. Alexander (0000-0003-2439-350X), Matthew J. Clarkson (0000-0002-5565-1252), Tom Vercauteren (0000-0003-1794-0456), Yipeng Hu (0000-0003-4902-0486)

Citation

Fu et al., (2020). DeepReg: a deep learning toolkit for medical image registration. Journal of Open Source Software, 5(55), 2705, https://doi.org/10.21105/joss.02705

Copy citation string · Copy BibTeX  
Tags

TensorFlow medical image registration image fusion deep learning neural networks

Altmetrics
Markdown badge

 

License

Authors of JOSS papers retain copyright.

This work is licensed under a Creative Commons Attribution 4.0 International License.

Creative Commons License

Public user content licensed CC BY 4.0 unless otherwise specified.
ISSN 2475-9066