HOOMD-TF: GPU-Accelerated, Online Machine Learning in the HOOMD-blue Molecular Dynamics Engine

C++ Cuda Python Submitted 27 May 2020Published 28 July 2020
Review

Editor: @richardjgowers (all papers)
Reviewers: @malramsay64 (all reviews), @rmeli (all reviews)

Authors

Rainier Barrett (0000-0002-5728-9074), Maghesree Chakraborty (0000-0001-5706-3027), Dilnoza B. Amirkulova (0000-0001-6961-3081), Heta A. Gandhi (0000-0002-9465-3840), Geemi P. Wellawatte (0000-0002-3772-6927), Andrew D. White (0000-0002-6647-3965)

Citation

Barrett et al., (2020). HOOMD-TF: GPU-Accelerated, Online Machine Learning in the HOOMD-blue Molecular Dynamics Engine. Journal of Open Source Software, 5(51), 2367, https://doi.org/10.21105/joss.02367

@article{Barrett2020, doi = {10.21105/joss.02367}, url = {https://doi.org/10.21105/joss.02367}, year = {2020}, publisher = {The Open Journal}, volume = {5}, number = {51}, pages = {2367}, author = {Rainier Barrett and Maghesree Chakraborty and Dilnoza B. Amirkulova and Heta A. Gandhi and Geemi P. Wellawatte and Andrew D. White}, title = {HOOMD-TF: GPU-Accelerated, Online Machine Learning in the HOOMD-blue Molecular Dynamics Engine}, journal = {Journal of Open Source Software} }
Copy citation string · Copy BibTeX  
Tags

molecular dynamics machine learning

Altmetrics
Markdown badge

 

License

Authors of JOSS papers retain copyright.

This work is licensed under a Creative Commons Attribution 4.0 International License.

Creative Commons License

Table of Contents
Public user content licensed CC BY 4.0 unless otherwise specified.
ISSN 2475-9066