Pakman: a modular, efficient and portable tool for approximate Bayesian inference

C++ C Submitted 01 August 2019Published 07 March 2020
Review

Editor: @jedbrown (all papers)
Reviewers: @jmlarson1 (all reviews), @gonsie (all reviews)

Authors

Thomas F. Pak (0000-0002-7198-7688), Ruth E. Baker (0000-0002-6304-9333), Joe M. Pitt-Francis (0000-0002-5094-5403)

Citation

Pak et al., (2020). Pakman: a modular, efficient and portable tool for approximate Bayesian inference. Journal of Open Source Software, 5(47), 1716, https://doi.org/10.21105/joss.01716

@article{Pak2020, doi = {10.21105/joss.01716}, url = {https://doi.org/10.21105/joss.01716}, year = {2020}, publisher = {The Open Journal}, volume = {5}, number = {47}, pages = {1716}, author = {Thomas F. Pak and Ruth E. Baker and Joe M. Pitt-Francis}, title = {Pakman: a modular, efficient and portable tool for approximate Bayesian inference}, journal = {Journal of Open Source Software} }
Copy citation string · Copy BibTeX  
Tags

MPI approximate Bayesian computation Bayesian inference parallel computing distributed computing

Altmetrics
Markdown badge

 

License

Authors of JOSS papers retain copyright.

This work is licensed under a Creative Commons Attribution 4.0 International License.

Creative Commons License

Table of Contents
Public user content licensed CC BY 4.0 unless otherwise specified.
ISSN 2475-9066