TimeSeriesClustering: An extensible framework in Julia

Julia Submitted 10 July 2019Published 08 September 2019

Editor: @danielskatz (all papers)
Reviewers: @jgoldfar (all reviews), @ahwillia (all reviews)


Holger Teichgraeber (0000-0002-4061-2226), Lucas Elias Kuepper (0000-0002-1992-310X), Adam R. Brandt (0000-0002-2528-1473)


Teichgraeber et al., (2019). TimeSeriesClustering: An extensible framework in Julia. Journal of Open Source Software, 4(41), 1573, https://doi.org/10.21105/joss.01573

@article{Teichgraeber2019, doi = {10.21105/joss.01573}, url = {https://doi.org/10.21105/joss.01573}, year = {2019}, publisher = {The Open Journal}, volume = {4}, number = {41}, pages = {1573}, author = {Holger Teichgraeber and Lucas Elias Kuepper and Adam R. Brandt}, title = {TimeSeriesClustering: An extensible framework in Julia}, journal = {Journal of Open Source Software} }
Copy citation string · Copy BibTeX  

unsupervised learning representative periods optimization machine learning time series

Markdown badge



Authors of JOSS papers retain copyright.

This work is licensed under a Creative Commons Attribution 4.0 International License.

Creative Commons License

Table of Contents
Public user content licensed CC BY 4.0 unless otherwise specified.
ISSN 2475-9066