Executorlib – Up-scaling Python workflows for hierarchical heterogenous high-performance computing

Python Jupyter Notebook Submitted 14 February 2025Published 01 April 2025
Review

Editor: @danielskatz (all papers)
Reviewers: @lwshanbd (all reviews), @svchb (all reviews)

Authors

Jan Janssen (0000-0001-9948-7119), Michael Gilbert Taylor (0000-0003-4327-2746), Ping Yang (0000-0003-4726-2860), Joerg Neugebauer (0000-0002-7903-2472), Danny Perez (0000-0003-3028-5249)

Citation

Janssen et al., (2025). Executorlib – Up-scaling Python workflows for hierarchical heterogenous high-performance computing. Journal of Open Source Software, 10(108), 7782, https://doi.org/10.21105/joss.07782

@article{Janssen2025, doi = {10.21105/joss.07782}, url = {https://doi.org/10.21105/joss.07782}, year = {2025}, publisher = {The Open Journal}, volume = {10}, number = {108}, pages = {7782}, author = {Jan Janssen and Michael Gilbert Taylor and Ping Yang and Joerg Neugebauer and Danny Perez}, title = {Executorlib – Up-scaling Python workflows for hierarchical heterogenous high-performance computing}, journal = {Journal of Open Source Software} }
Copy citation string · Copy BibTeX  
Tags

High Performance Computing Task Scheduling

Altmetrics
Markdown badge

 

License

Authors of JOSS papers retain copyright.

This work is licensed under a Creative Commons Attribution 4.0 International License.

Creative Commons License

Table of Contents
Public user content licensed CC BY 4.0 unless otherwise specified.
ISSN 2475-9066