DeepHyper: A Python Package for Massively Parallel Hyperparameter Optimization in Machine Learning

Python Submitted 10 March 2025Published 19 May 2025
Review

Editor: @jbytecode (all papers)
Reviewers: @jungtaekkim (all reviews), @y0z (all reviews)

Authors

Romain Egele (0000-0002-8992-8192), Prasanna Balaprakash (0000-0002-0292-5715), Gavin M. Wiggins, Brett Eiffert

Citation

Egele et al., (2025). DeepHyper: A Python Package for Massively Parallel Hyperparameter Optimization in Machine Learning. Journal of Open Source Software, 10(109), 7975, https://doi.org/10.21105/joss.07975

@article{Egele2025, doi = {10.21105/joss.07975}, url = {https://doi.org/10.21105/joss.07975}, year = {2025}, publisher = {The Open Journal}, volume = {10}, number = {109}, pages = {7975}, author = {Romain Egele and Prasanna Balaprakash and Gavin M. Wiggins and Brett Eiffert}, title = {DeepHyper: A Python Package for Massively Parallel Hyperparameter Optimization in Machine Learning}, journal = {Journal of Open Source Software} }
Copy citation string · Copy BibTeX  
Tags

machine learning hyperparameter optimization multi-fidelity neural architecture search ensemble high-performance computing

Altmetrics
Markdown badge

 

License

Authors of JOSS papers retain copyright.

This work is licensed under a Creative Commons Attribution 4.0 International License.

Creative Commons License

Table of Contents
Public user content licensed CC BY 4.0 unless otherwise specified.
ISSN 2475-9066