hetGPy: Heteroskedastic Gaussian Process Modeling in Python

Python C++ Jupyter Notebook R Submitted 18 October 2024Published 05 February 2025
Review

Editor: @matthewfeickert (all papers)
Reviewers: @Edenhofer (all reviews), @DanWaxman (all reviews)

Authors

David O'Gara (0000-0002-1957-400X), Mickaël Binois (0000-0002-7225-1680), Roman Garnett (0000-0002-0152-5453), Ross A. Hammond (0009-0005-1046-9296)

Citation

O'Gara et al., (2025). hetGPy: Heteroskedastic Gaussian Process Modeling in Python. Journal of Open Source Software, 10(106), 7518, https://doi.org/10.21105/joss.07518

@article{O'Gara2025, doi = {10.21105/joss.07518}, url = {https://doi.org/10.21105/joss.07518}, year = {2025}, publisher = {The Open Journal}, volume = {10}, number = {106}, pages = {7518}, author = {David O'Gara and Mickaël Binois and Roman Garnett and Ross A. Hammond}, title = {hetGPy: Heteroskedastic Gaussian Process Modeling in Python}, journal = {Journal of Open Source Software} }
Copy citation string · Copy BibTeX  
Tags

Gaussian Processes computer experiments Bayesian Optimization

Altmetrics
Markdown badge

 

License

Authors of JOSS papers retain copyright.

This work is licensed under a Creative Commons Attribution 4.0 International License.

Creative Commons License

Table of Contents
Public user content licensed CC BY 4.0 unless otherwise specified.
ISSN 2475-9066