TorchSurv: A Lightweight Package for Deep Survival Analysis

Python R Submitted 24 July 2024Published 30 December 2024
Review

Editor: @kanishkan91 (all papers)
Reviewers: @XinyiEmilyZhang (all reviews), @rich2355 (all reviews)

Authors

Mélodie Monod (0000-0001-6448-2051), Peter Krusche (0009-0003-2541-5181), Qian Cao, Berkman Sahiner, Nicholas Petrick, David Ohlssen, Thibaud Coroller (0000-0001-7662-8724)

Citation

Monod et al., (2024). TorchSurv: A Lightweight Package for Deep Survival Analysis. Journal of Open Source Software, 9(104), 7341, https://doi.org/10.21105/joss.07341

@article{Monod2024, doi = {10.21105/joss.07341}, url = {https://doi.org/10.21105/joss.07341}, year = {2024}, publisher = {The Open Journal}, volume = {9}, number = {104}, pages = {7341}, author = {Mélodie Monod and Peter Krusche and Qian Cao and Berkman Sahiner and Nicholas Petrick and David Ohlssen and Thibaud Coroller}, title = {TorchSurv: A Lightweight Package for Deep Survival Analysis}, journal = {Journal of Open Source Software} }
Copy citation string · Copy BibTeX  
Tags

Deep Learning Survival Analysis PyTorch

Altmetrics
Markdown badge

 

License

Authors of JOSS papers retain copyright.

This work is licensed under a Creative Commons Attribution 4.0 International License.

Creative Commons License

Table of Contents
Public user content licensed CC BY 4.0 unless otherwise specified.
ISSN 2475-9066