Editor: @arfon (all papers)
Reviewers: @divijghose (all reviews), @GarrettMerz (all reviews)
Jackson Barr (0000-0002-9752-9204), Diptaparna Biswas (0000-0002-7543-3471), Maxence Draguet (0000-0003-1530-0519), Philipp Gadow (0000-0003-4475-6734), Emil Haines (0000-0002-5417-2081), Osama Karkout (0000-0002-4907-9499), Dmitrii Kobylianskii (0009-0002-0070-5900), Wei Sheng Lai (0009-0001-6726-9851), Matthew Leigh (0000-0003-1406-1413), Nicholas Luongo (0000-0001-6527-0253), Ivan Oleksiyuk (0000-0002-4784-6340), Nikita Pond (0000-0002-5966-0332), Sébastien Rettie (0000-0002-7092-3893), Andrius Vaitkus (0000-0002-0393-666X), Samuel Van Stroud (0000-0002-7969-0301), Johannes Wagner (0000-0002-5588-0020)
Barr et al., (2025). Salt: Multimodal Multitask Machine Learning for High Energy Physics. Journal of Open Source Software, 10(112), 7217, https://doi.org/10.21105/joss.07217
high energy physics machine learning jet physics flavour tagging
Authors of JOSS papers retain copyright.
This work is licensed under a Creative Commons Attribution 4.0 International License.
Journal of Open Source Software is an affiliate of the Open Source Initiative.
Journal of Open Source Software is part of Open Journals, which is a NumFOCUS-sponsored project.
Table of Contents
Public user content licensed CC BY 4.0 unless otherwise specified.
ISSN 2475-9066