DiffeRT2d: A Differentiable Ray Tracing Python Framework for Radio Propagation

Python Submitted 20 June 2024Published 30 June 2024
Review

Editor: @danielskatz (all papers)
Reviewers: @idoby (all reviews), @roth-jakob (all reviews)

Authors

Jérome Eertmans (0000-0002-5579-5360), Claude Oestges (0000-0002-0902-4565), Laurent Jacques (0000-0002-6261-0328)

Citation

Eertmans et al., (2024). DiffeRT2d: A Differentiable Ray Tracing Python Framework for Radio Propagation. Journal of Open Source Software, 9(98), 6915, https://doi.org/10.21105/joss.06915

@article{Eertmans2024, doi = {10.21105/joss.06915}, url = {https://doi.org/10.21105/joss.06915}, year = {2024}, publisher = {The Open Journal}, volume = {9}, number = {98}, pages = {6915}, author = {Jérome Eertmans and Claude Oestges and Laurent Jacques}, title = {DiffeRT2d: A Differentiable Ray Tracing Python Framework for Radio Propagation}, journal = {Journal of Open Source Software} }
Copy citation string · Copy BibTeX  
Tags

radio propagation channel modeling ray tracing differentiable framework

Altmetrics
Markdown badge

 

License

Authors of JOSS papers retain copyright.

This work is licensed under a Creative Commons Attribution 4.0 International License.

Creative Commons License

Table of Contents
Public user content licensed CC BY 4.0 unless otherwise specified.
ISSN 2475-9066