DTW-C++: Fast dynamic time warping and clustering of time series data

Python C++ Submitted 29 April 2024Published 06 September 2024
Review

Editor: @logological (all papers)
Reviewers: @ZhenchenHong (all reviews), @i64 (all reviews)

Authors

Volkan Kumtepeli (0000-0003-2392-9771), Rebecca Perriment (0009-0003-2781-0724), David A. Howey (0000-0002-0620-3955)

Citation

Kumtepeli et al., (2024). DTW-C++: Fast dynamic time warping and clustering of time series data. Journal of Open Source Software, 9(101), 6881, https://doi.org/10.21105/joss.06881

@article{Kumtepeli2024, doi = {10.21105/joss.06881}, url = {https://doi.org/10.21105/joss.06881}, year = {2024}, publisher = {The Open Journal}, volume = {9}, number = {101}, pages = {6881}, author = {Volkan Kumtepeli and Rebecca Perriment and David A. Howey}, title = {DTW-C++: Fast dynamic time warping and clustering of time series data}, journal = {Journal of Open Source Software} }
Copy citation string · Copy BibTeX  
Tags

Dynamic time warping Clustering k-medoids Integer programming Dynamic programming Time series

Altmetrics
Markdown badge

 

License

Authors of JOSS papers retain copyright.

This work is licensed under a Creative Commons Attribution 4.0 International License.

Creative Commons License

Table of Contents
Public user content licensed CC BY 4.0 unless otherwise specified.
ISSN 2475-9066