Φ-ML: Intuitive Scientific Computing with Dimension Types for Jax, PyTorch, TensorFlow & NumPy

Python C++ Submitted 11 August 2023Published 01 March 2024
Review

Editor: @mstimberg (all papers)
Reviewers: @wandeln (all reviews), @chaoming0625 (all reviews), @gauravbokil8 (all reviews)

Authors

Philipp Holl (0000-0001-9246-5195), Nils Thuerey (0000-0001-6647-8910)

Citation

Holl et al., (2024). Φ-ML: Intuitive Scientific Computing with Dimension Types for Jax, PyTorch, TensorFlow & NumPy. Journal of Open Source Software, 9(95), 6171, https://doi.org/10.21105/joss.06171

@article{Holl2024, doi = {10.21105/joss.06171}, url = {https://doi.org/10.21105/joss.06171}, year = {2024}, publisher = {The Open Journal}, volume = {9}, number = {95}, pages = {6171}, author = {Philipp Holl and Nils Thuerey}, title = {Φ-ML: Intuitive Scientific Computing with Dimension Types for Jax, PyTorch, TensorFlow & NumPy}, journal = {Journal of Open Source Software} }
Copy citation string · Copy BibTeX  
Tags

Machine Learning Jax TensorFlow PyTorch NumPy Differentiable simulations Sparse linear systems Preconditioners

Altmetrics
Markdown badge

 

License

Authors of JOSS papers retain copyright.

This work is licensed under a Creative Commons Attribution 4.0 International License.

Creative Commons License

Table of Contents
Public user content licensed CC BY 4.0 unless otherwise specified.
ISSN 2475-9066