TrackSegNet: a tool for trajectory segmentation into diffusive states using supervised deep learning

Python Submitted 03 May 2023Published 04 June 2024
Review

Editor: @Kevin-Mattheus-Moerman (all papers)
Reviewers: @imagejan (all reviews), @ajasja (all reviews)

Authors

Hélène Kabbech (0000-0002-9200-2112), Ihor Smal (0000-0001-7576-7028)

Citation

Kabbech et al., (2024). TrackSegNet: a tool for trajectory segmentation into diffusive states using supervised deep learning. Journal of Open Source Software, 9(98), 6157, https://doi.org/10.21105/joss.06157

@article{Kabbech2024, doi = {10.21105/joss.06157}, url = {https://doi.org/10.21105/joss.06157}, year = {2024}, publisher = {The Open Journal}, volume = {9}, number = {98}, pages = {6157}, author = {Hélène Kabbech and Ihor Smal}, title = {TrackSegNet: a tool for trajectory segmentation into diffusive states using supervised deep learning}, journal = {Journal of Open Source Software} }
Copy citation string · Copy BibTeX  
Tags

single-particle tracking trajectory segmentation supervised deep learning mean squared displacement

Altmetrics
Markdown badge

 

License

Authors of JOSS papers retain copyright.

This work is licensed under a Creative Commons Attribution 4.0 International License.

Creative Commons License

Table of Contents
Public user content licensed CC BY 4.0 unless otherwise specified.
ISSN 2475-9066