CM++ - A Meta-method for Well-Connected Community Detection

Python R Submitted 29 October 2023Published 19 January 2024
Review

Editor: @arfon (all papers)
Reviewers: @LuisScoccola (all reviews), @chryswoods (all reviews)

Authors

Vikram Ramavarapu (0009-0001-8875-7213), Fábio Jose Ayres (0009-0000-6821-4687), Minhyuk Park (0000-0002-8676-7565), Vidya Kamath Pailodi (0009-0000-0987-5901), João Alfredo Cardoso Lamy (0009-0005-4744-4754), Tandy Warnow (0000-0001-7717-3514), George Chacko (0000-0002-2127-1892)

Citation

Ramavarapu et al., (2024). CM++ - A Meta-method for Well-Connected Community Detection. Journal of Open Source Software, 9(93), 6073, https://doi.org/10.21105/joss.06073

@article{Ramavarapu2024, doi = {10.21105/joss.06073}, url = {https://doi.org/10.21105/joss.06073}, year = {2024}, publisher = {The Open Journal}, volume = {9}, number = {93}, pages = {6073}, author = {Vikram Ramavarapu and Fábio Jose Ayres and Minhyuk Park and Vidya Kamath Pailodi and João Alfredo Cardoso Lamy and Tandy Warnow and George Chacko}, title = {CM++ - A Meta-method for Well-Connected Community Detection}, journal = {Journal of Open Source Software} }
Copy citation string · Copy BibTeX  
Tags

CM++ connectivity minimum cut complex network analysis graph network degree clustering

Altmetrics
Markdown badge

 

License

Authors of JOSS papers retain copyright.

This work is licensed under a Creative Commons Attribution 4.0 International License.

Creative Commons License

Table of Contents
Public user content licensed CC BY 4.0 unless otherwise specified.
ISSN 2475-9066