PyKoopman: A Python Package for Data-Driven Approximation of the Koopman Operator

Python Submitted 20 June 2023Published 25 February 2024
Review

Editor: @olexandr-konovalov (all papers)
Reviewers: @ulf1 (all reviews), @fandreuz (all reviews)

Authors

Shaowu Pan (0000-0002-2462-362X), Eurika Kaiser (0000-0001-6049-0812), Brian M. de Silva (0000-0003-0944-900X), J. Nathan Kutz (0000-0002-6004-2275), Steven L. Brunton (0000-0002-6565-5118)

Citation

Pan et al., (2024). PyKoopman: A Python Package for Data-Driven Approximation of the Koopman Operator. Journal of Open Source Software, 9(94), 5881, https://doi.org/10.21105/joss.05881

@article{Pan2024, doi = {10.21105/joss.05881}, url = {https://doi.org/10.21105/joss.05881}, year = {2024}, publisher = {The Open Journal}, volume = {9}, number = {94}, pages = {5881}, author = {Shaowu Pan and Eurika Kaiser and Brian M. de Silva and J. Nathan Kutz and Steven L. Brunton}, title = {PyKoopman: A Python Package for Data-Driven Approximation of the Koopman Operator}, journal = {Journal of Open Source Software} }
Copy citation string · Copy BibTeX  
Tags

dynamical systems Koopman operator system identification machine learning neural networks

Altmetrics
Markdown badge

 

License

Authors of JOSS papers retain copyright.

This work is licensed under a Creative Commons Attribution 4.0 International License.

Creative Commons License

Table of Contents
Public user content licensed CC BY 4.0 unless otherwise specified.
ISSN 2475-9066