Editor: @arfon (all papers)
Reviewers: @hbaniecki (all reviews), @aksholokhov (all reviews)
Enric Grau-Luque (0000-0002-8357-5824), Ignacio Becerril-Romero (0000-0002-7087-6097), Alejandro Perez-Rodriguez (0000-0002-3634-1355), Maxim Guc (0000-0002-2072-9566), Victor Izquierdo-Roca (0000-0002-5502-3133)
Grau-Luque et al., (2023). pudu: A Python library for agnostic feature selection and explainability of Machine Learning spectroscopic problems. Journal of Open Source Software, 8(92), 5873, https://doi.org/10.21105/joss.05873
Spectroscopy Machine Learning Explainability and intepretability Classification and regression
Authors of JOSS papers retain copyright.
This work is licensed under a Creative Commons Attribution 4.0 International License.
Journal of Open Source Software is an affiliate of the Open Source Initiative.
Journal of Open Source Software is part of Open Journals, which is a NumFOCUS-sponsored project.
Table of Contents
Public user content licensed CC BY 4.0 unless otherwise specified.
ISSN 2475-9066