pudu: A Python library for agnostic feature selection and explainability of Machine Learning spectroscopic problems

Python Submitted 10 July 2023Published 12 December 2023
Review

Editor: @arfon (all papers)
Reviewers: @hbaniecki (all reviews), @aksholokhov (all reviews)

Authors

Enric Grau-Luque (0000-0002-8357-5824), Ignacio Becerril-Romero (0000-0002-7087-6097), Alejandro Perez-Rodriguez (0000-0002-3634-1355), Maxim Guc (0000-0002-2072-9566), Victor Izquierdo-Roca (0000-0002-5502-3133)

Citation

Grau-Luque et al., (2023). pudu: A Python library for agnostic feature selection and explainability of Machine Learning spectroscopic problems. Journal of Open Source Software, 8(92), 5873, https://doi.org/10.21105/joss.05873

@article{Grau-Luque2023, doi = {10.21105/joss.05873}, url = {https://doi.org/10.21105/joss.05873}, year = {2023}, publisher = {The Open Journal}, volume = {8}, number = {92}, pages = {5873}, author = {Enric Grau-Luque and Ignacio Becerril-Romero and Alejandro Perez-Rodriguez and Maxim Guc and Victor Izquierdo-Roca}, title = {pudu: A Python library for agnostic feature selection and explainability of Machine Learning spectroscopic problems}, journal = {Journal of Open Source Software} }
Copy citation string · Copy BibTeX  
Tags

Spectroscopy Machine Learning Explainability and intepretability Classification and regression

Altmetrics
Markdown badge

 

License

Authors of JOSS papers retain copyright.

This work is licensed under a Creative Commons Attribution 4.0 International License.

Creative Commons License

Table of Contents
Public user content licensed CC BY 4.0 unless otherwise specified.
ISSN 2475-9066