PyDGN: a Python Library for Flexible and Reproducible Research on Deep Learning for Graphs

Python Submitted 26 June 2023Published 01 October 2023
Review

Editor: @arfon (all papers)
Reviewers: @idoby (all reviews), @sepandhaghighi (all reviews)

Authors

Federico Errica (0000-0001-5181-2904), Davide Bacciu (0000-0001-5213-2468), Alessio Micheli (0000-0001-5764-5238)

Citation

Errica et al., (2023). PyDGN: a Python Library for Flexible and Reproducible Research on Deep Learning for Graphs. Journal of Open Source Software, 8(90), 5713, https://doi.org/10.21105/joss.05713

@article{Errica2023, doi = {10.21105/joss.05713}, url = {https://doi.org/10.21105/joss.05713}, year = {2023}, publisher = {The Open Journal}, volume = {8}, number = {90}, pages = {5713}, author = {Federico Errica and Davide Bacciu and Alessio Micheli}, title = {PyDGN: a Python Library for Flexible and Reproducible Research on Deep Learning for Graphs}, journal = {Journal of Open Source Software} }
Copy citation string · Copy BibTeX  
Tags

Machine Learning Graph Networks Deep Learning for Graphs

Altmetrics
Markdown badge

 

License

Authors of JOSS papers retain copyright.

This work is licensed under a Creative Commons Attribution 4.0 International License.

Creative Commons License

Table of Contents
Public user content licensed CC BY 4.0 unless otherwise specified.
ISSN 2475-9066