Molearn: a Python package streamlining the design of generative models of biomolecular dynamics

Python Submitted 17 May 2023Published 05 September 2023
Review

Editor: @richardjgowers (all papers)
Reviewers: @rmeli (all reviews), @JoaoRodrigues (all reviews)

Authors

Samuel C. Musson (0000-0002-2189-554X), Matteo T. Degiacomi (0000-0003-4672-471X)

Citation

Musson et al., (2023). Molearn: a Python package streamlining the design of generative models of biomolecular dynamics. Journal of Open Source Software, 8(89), 5523, https://doi.org/10.21105/joss.05523

@article{Musson2023, doi = {10.21105/joss.05523}, url = {https://doi.org/10.21105/joss.05523}, year = {2023}, publisher = {The Open Journal}, volume = {8}, number = {89}, pages = {5523}, author = {Samuel C. Musson and Matteo T. Degiacomi}, title = {Molearn: a Python package streamlining the design of generative models of biomolecular dynamics}, journal = {Journal of Open Source Software} }
Copy citation string · Copy BibTeX  
Tags

machine learning molecular dynamics proteins

Altmetrics
Markdown badge

 

License

Authors of JOSS papers retain copyright.

This work is licensed under a Creative Commons Attribution 4.0 International License.

Creative Commons License

Table of Contents
Public user content licensed CC BY 4.0 unless otherwise specified.
ISSN 2475-9066