GMP-Featurizer: A parallelized Python package for efficiently computing the Gaussian Multipole features of atomic systems

Python C++ C Submitted 04 April 2023Published 10 August 2023
Review

Editor: @rkurchin (all papers)
Reviewers: @isdanni (all reviews), @bdice (all reviews), @yw-fang (all reviews)

Authors

Xiangyun Lei (0000-0002-2333-9205), Joseph Montoya (0000-0001-5760-2860)

Citation

Lei et al., (2023). GMP-Featurizer: A parallelized Python package for efficiently computing the Gaussian Multipole features of atomic systems. Journal of Open Source Software, 8(88), 5476, https://doi.org/10.21105/joss.05476

@article{Lei2023, doi = {10.21105/joss.05476}, url = {https://doi.org/10.21105/joss.05476}, year = {2023}, publisher = {The Open Journal}, volume = {8}, number = {88}, pages = {5476}, author = {Xiangyun Lei and Joseph Montoya}, title = {GMP-Featurizer: A parallelized Python package for efficiently computing the Gaussian Multipole features of atomic systems}, journal = {Journal of Open Source Software} }
Copy citation string · Copy BibTeX  
Tags

Parallelization Machine Learning Chemistry Molecular Dynamics

Altmetrics
Markdown badge

 

License

Authors of JOSS papers retain copyright.

This work is licensed under a Creative Commons Attribution 4.0 International License.

Creative Commons License

Table of Contents
Public user content licensed CC BY 4.0 unless otherwise specified.
ISSN 2475-9066