FitSNAP: Atomistic machine learning with LAMMPS

Python Cython C Jupyter Notebook Submitted 02 December 2022Published 06 April 2023

Editor: @jmschrei (all papers)
Reviewers: @tpurcell90 (all reviews), @bahung (all reviews)


A. Rohskopf (0000-0002-2712-8296), C. Sievers, N. Lubbers (0000-0002-9001-9973), M.a. Cusentino (0000-0001-9505-6442), J. Goff (0000-0001-7026-7200), J. Janssen (0000-0001-9948-7119), M. McCarthy (0000-0003-4388-4953), D. Montes Oca de Zapiain (0000-0001-7890-0859), S. Nikolov (0000-0002-2907-6629), K. Sargsyan (0000-0002-1037-786X), D. Sema (0000-0002-0160-1743), E. Sikorski (0000-0003-3292-6564), L. Williams (0000-0002-9062-8293), A.p. Thompson (0000-0002-0324-9114), M.a. Wood (0000-0001-5878-4096)


Rohskopf et al., (2023). FitSNAP: Atomistic machine learning with LAMMPS. Journal of Open Source Software, 8(84), 5118,

@article{Rohskopf2023, doi = {10.21105/joss.05118}, url = {}, year = {2023}, publisher = {The Open Journal}, volume = {8}, number = {84}, pages = {5118}, author = {A. Rohskopf and C. Sievers and N. Lubbers and M.a. Cusentino and J. Goff and J. Janssen and M. McCarthy and D. Montes Oca de Zapiain and S. Nikolov and K. Sargsyan and D. Sema and E. Sikorski and L. Williams and A.p. Thompson and M.a. Wood}, title = {FitSNAP: Atomistic machine learning with LAMMPS}, journal = {Journal of Open Source Software} }
Copy citation string · Copy BibTeX  

machine learning interatomic potentials neural networks

Markdown badge



Authors of JOSS papers retain copyright.

This work is licensed under a Creative Commons Attribution 4.0 International License.

Creative Commons License

Table of Contents
Public user content licensed CC BY 4.0 unless otherwise specified.
ISSN 2475-9066