Scarlet: Scalable Anytime Algorithms for Learning Fragments of Linear Temporal Logic

Python Submitted 10 August 2022Published 09 January 2024
Review

Editor: @adi3 (all papers)
Reviewers: @JDRomano2 (all reviews), @Smattr (all reviews)

Authors

Ritam Raha (0000-0003-1467-1182), Rajarshi Roy (0000-0002-0202-1169), Nathanaël Fijalkow (0000-0002-6576-4680), Daniel Neider (0000-0001-9276-6342)

Citation

Raha et al., (2024). Scarlet: Scalable Anytime Algorithms for Learning Fragments of Linear Temporal Logic. Journal of Open Source Software, 9(93), 5052, https://doi.org/10.21105/joss.05052

@article{Raha2024, doi = {10.21105/joss.05052}, url = {https://doi.org/10.21105/joss.05052}, year = {2024}, publisher = {The Open Journal}, volume = {9}, number = {93}, pages = {5052}, author = {Ritam Raha and Rajarshi Roy and Nathanaël Fijalkow and Daniel Neider}, title = {Scarlet: Scalable Anytime Algorithms for Learning Fragments of Linear Temporal Logic}, journal = {Journal of Open Source Software} }
Copy citation string · Copy BibTeX  
Tags

linear temporal logic (LTL) Explainable AI (XAI) specification mining Formal Methods

Altmetrics
Markdown badge

 

License

Authors of JOSS papers retain copyright.

This work is licensed under a Creative Commons Attribution 4.0 International License.

Creative Commons License

Table of Contents
Public user content licensed CC BY 4.0 unless otherwise specified.
ISSN 2475-9066