Editor: @dfm (all papers)
Reviewers: @JostMigenda (all reviews), @GageDeZoort (all reviews)
Andreas Søgaard (0000-0002-0823-056X), Rasmus F. Ørsøe (0000-0001-8890-4124), Morten Holm (0000-0003-1383-2810), Leon Bozianu (0000-0002-1243-9980), Aske Rosted (0000-0003-2410-400X), Troels C. Petersen (0000-0003-0221-3037), Kaare Endrup Iversen (0000-0001-6533-4085), Andreas Hermansen (0009-0006-1162-9770), Tim Guggenmos, Peter Andresen (0009-0008-5759-0490), Martin Ha Minh (0000-0001-7776-4875), Ludwig Neste (0000-0002-4829-3469), Moust Holmes (0009-0000-8530-7041), Axel Pontén (0009-0008-2463-2930), Kayla Leonard DeHolton (0000-0002-8795-0601), Philipp Eller (0000-0001-6354-5209)
Søgaard et al., (2023). GraphNeT: Graph neural networks for neutrino telescope event reconstruction. Journal of Open Source Software, 8(85), 4971, https://doi.org/10.21105/joss.04971
machine learning deep learning neural networks graph neural networks astrophysics particle physics neutrinos
Authors of JOSS papers retain copyright.
This work is licensed under a Creative Commons Attribution 4.0 International License.
Journal of Open Source Software is an affiliate of the Open Source Inititative.
Journal of Open Source Software is part of Open Journals, which is a NumFOCUS-sponsored project.
Table of Contents
Public user content licensed CC BY 4.0 unless otherwise specified.
ISSN 2475-9066