FreqAI: generalizing adaptive modeling for chaotic time-series market forecasts

Python Submitted 11 October 2022Published 15 December 2022
Review

Editor: @Fei-Tao (all papers)
Reviewers: @ady00 (all reviews), @shagunsodhani (all reviews)

Authors

Robert A. Caulk (0000-0001-5618-8629), Elin Törnquist (0000-0003-3289-8604), Matthias Voppichler, Andrew R. Lawless, Ryan McMullan, Wagner Costa Santos, Timothy C. Pogue, Johan van der Vlugt, Stefan P. Gehring, Pascal Schmidt (0000-0001-9328-4345)

Citation

Caulk et al., (2022). FreqAI: generalizing adaptive modeling for chaotic time-series market forecasts. Journal of Open Source Software, 7(80), 4864, https://doi.org/10.21105/joss.04864

@article{Caulk2022, doi = {10.21105/joss.04864}, url = {https://doi.org/10.21105/joss.04864}, year = {2022}, publisher = {The Open Journal}, volume = {7}, number = {80}, pages = {4864}, author = {Caulk, Robert A. and Törnquist, Elin and Voppichler, Matthias and Lawless, Andrew R. and McMullan, Ryan and Santos, Wagner Costa and Pogue, Timothy C. and van der Vlugt, Johan and Gehring, Stefan P. and Schmidt, Pascal}, title = {FreqAI: generalizing adaptive modeling for chaotic time-series market forecasts}, journal = {Journal of Open Source Software} }
Copy citation string · Copy BibTeX  
Tags

Machine Learning adaptive modeling chaotic systems time-series forecasting

Altmetrics
Markdown badge

 

License

Authors of JOSS papers retain copyright.

This work is licensed under a Creative Commons Attribution 4.0 International License.

Creative Commons License

Table of Contents
Public user content licensed CC BY 4.0 unless otherwise specified.
ISSN 2475-9066