enetLTS: Robust and Sparse Methods for High Dimensional Linear, Binary, and Multinomial Regression

R Submitted 23 August 2022Published 13 February 2023
Review

Editor: @fabian-s (all papers)
Reviewers: @mcavs (all reviews), @marastadler (all reviews)

Authors

Fatma Sevinc Kurnaz (0000-0002-5958-7366), Peter Filzmoser (0000-0002-8014-4682)

Citation

Kurnaz et al., (2023). enetLTS: Robust and Sparse Methods for High Dimensional Linear, Binary, and Multinomial Regression. Journal of Open Source Software, 8(82), 4773, https://doi.org/10.21105/joss.04773

@article{Kurnaz2023, doi = {10.21105/joss.04773}, url = {https://doi.org/10.21105/joss.04773}, year = {2023}, publisher = {The Open Journal}, volume = {8}, number = {82}, pages = {4773}, author = {Fatma Sevinc Kurnaz and Peter Filzmoser}, title = {enetLTS: Robust and Sparse Methods for High Dimensional Linear, Binary, and Multinomial Regression}, journal = {Journal of Open Source Software} }
Copy citation string · Copy BibTeX  
Tags

Robust regression Elastic net outlier detection

Altmetrics
Markdown badge

 

License

Authors of JOSS papers retain copyright.

This work is licensed under a Creative Commons Attribution 4.0 International License.

Creative Commons License

Table of Contents
Public user content licensed CC BY 4.0 unless otherwise specified.
ISSN 2475-9066