PyNM: a Lightweight Python implementation of Normative Modeling

Python Jupyter Notebook Submitted 11 March 2022Published 08 December 2022
Review

Editor: @dfm (all papers)
Reviewers: @smkia (all reviews), @saigerutherford (all reviews)

Authors

Annabelle Harvey (0000-0002-9940-8799), Guillaume Dumas (0000-0002-2253-1844)

Citation

Harvey et al., (2022). PyNM: a Lightweight Python implementation of Normative Modeling. Journal of Open Source Software, 7(80), 4321, https://doi.org/10.21105/joss.04321

@article{Harvey2022, doi = {10.21105/joss.04321}, url = {https://doi.org/10.21105/joss.04321}, year = {2022}, publisher = {The Open Journal}, volume = {7}, number = {80}, pages = {4321}, author = {Annabelle Harvey and Guillaume Dumas}, title = {PyNM: a Lightweight Python implementation of Normative Modeling}, journal = {Journal of Open Source Software} }
Copy citation string · Copy BibTeX  
Tags

Normative Modeling Heterogeneity Heteroskedasticity Big Data Centiles LOESS Gaussian Process Stochastic Variational Gaussian Process GAMLSS Computational Psychiatry Neuroscience

Altmetrics
Markdown badge

 

License

Authors of JOSS papers retain copyright.

This work is licensed under a Creative Commons Attribution 4.0 International License.

Creative Commons License

Table of Contents
Public user content licensed CC BY 4.0 unless otherwise specified.
ISSN 2475-9066