pymdp: A Python library for active inference in discrete state spaces

Python MATLAB Submitted 14 January 2022Published 04 May 2022
Review

Editor: @emdupre (all papers)
Reviewers: @seankmartin (all reviews), @patrickmineault (all reviews)

Authors

Conor Heins, Beren Millidge, Daphne Demekas, Brennan Klein (0000-0001-8326-5044), Karl Friston, Iain D. Couzin, Alexander Tschantz

Citation

Heins et al., (2022). pymdp: A Python library for active inference in discrete state spaces. Journal of Open Source Software, 7(73), 4098, https://doi.org/10.21105/joss.04098

@article{Heins2022, doi = {10.21105/joss.04098}, url = {https://doi.org/10.21105/joss.04098}, year = {2022}, publisher = {The Open Journal}, volume = {7}, number = {73}, pages = {4098}, author = {Conor Heins and Beren Millidge and Daphne Demekas and Brennan Klein and Karl Friston and Iain D. Couzin and Alexander Tschantz}, title = {pymdp: A Python library for active inference in discrete state spaces}, journal = {Journal of Open Source Software} }
Copy citation string · Copy BibTeX  
Tags

active inference Markov Decision Process POMDP MDP Reinforcement Learning Artificial Intelligence Bayesian inference free energy principle

Altmetrics
Markdown badge

 

License

Authors of JOSS papers retain copyright.

This work is licensed under a Creative Commons Attribution 4.0 International License.

Creative Commons License

Table of Contents
Public user content licensed CC BY 4.0 unless otherwise specified.
ISSN 2475-9066