VeridicalFlow: a Python package for building trustworthy data science pipelines with PCS

Jupyter Notebook Python Submitted 01 November 2021Published 12 January 2022
Review

Editor: @jbytecode (all papers)
Reviewers: @kmichael08 (all reviews), @richrobe (all reviews)

Authors

James Duncan (0000-0003-3297-681X), Rush Kapoor, Abhineet Agarwal, Chandan Singh (0000-0003-0318-2340), Bin Yu

Citation

Duncan et al., (2022). VeridicalFlow: a Python package for building trustworthy data science pipelines with PCS. Journal of Open Source Software, 7(69), 3895, https://doi.org/10.21105/joss.03895

@article{Duncan2022, doi = {10.21105/joss.03895}, url = {https://doi.org/10.21105/joss.03895}, year = {2022}, publisher = {The Open Journal}, volume = {7}, number = {69}, pages = {3895}, author = {James Duncan and Rush Kapoor and Abhineet Agarwal and Chandan Singh and Bin Yu}, title = {VeridicalFlow: a Python package for building trustworthy data science pipelines with PCS}, journal = {Journal of Open Source Software} }
Copy citation string · Copy BibTeX  
Tags

python stability reproducibility data science caching

Altmetrics
Markdown badge

 

License

Authors of JOSS papers retain copyright.

This work is licensed under a Creative Commons Attribution 4.0 International License.

Creative Commons License

Public user content licensed CC BY 4.0 unless otherwise specified.
ISSN 2475-9066