RandomForestsGLS: An R package for Random Forests for dependent data

R C++ C Submitted 02 September 2021Published 15 March 2022
Review

Editor: @fabian-s (all papers)
Reviewers: @mnwright (all reviews), @pdwaggoner (all reviews)

Authors

Arkajyoti Saha, Sumanta Basu, Abhirup Datta

Citation

Saha et al., (2022). RandomForestsGLS: An R package for Random Forests for dependent data. Journal of Open Source Software, 7(71), 3780, https://doi.org/10.21105/joss.03780

@article{Saha2022, doi = {10.21105/joss.03780}, url = {https://doi.org/10.21105/joss.03780}, year = {2022}, publisher = {The Open Journal}, volume = {7}, number = {71}, pages = {3780}, author = {Arkajyoti Saha and Sumanta Basu and Abhirup Datta}, title = {RandomForestsGLS: An R package for Random Forests for dependent data}, journal = {Journal of Open Source Software} }
Copy citation string · Copy BibTeX  
Tags

spatial statistics Gaussian Processes Random forests generalized least-squares

Altmetrics
Markdown badge

 

License

Authors of JOSS papers retain copyright.

This work is licensed under a Creative Commons Attribution 4.0 International License.

Creative Commons License

Table of Contents
Public user content licensed CC BY 4.0 unless otherwise specified.
ISSN 2475-9066