SPbLA: The Library of GPGPU-powered Sparse Boolean Linear Algebra Operations

Python C C++ Submitted 07 September 2021Published 20 August 2022
Review

Editor: @Nikoleta-v3 (all papers)
Reviewers: @mlxd (all reviews), @bencardoen (all reviews)

Authors

Egor Orachev (0000-0002-0424-4059), Maria Karpenko, Pavel Alimov, Semyon Grigorev (0000-0002-7966-0698)

Citation

Orachev et al., (2022). SPbLA: The Library of GPGPU-powered Sparse Boolean Linear Algebra Operations. Journal of Open Source Software, 7(76), 3743, https://doi.org/10.21105/joss.03743

@article{Orachev2022, doi = {10.21105/joss.03743}, url = {https://doi.org/10.21105/joss.03743}, year = {2022}, publisher = {The Open Journal}, volume = {7}, number = {76}, pages = {3743}, author = {Egor Orachev and Maria Karpenko and Pavel Alimov and Semyon Grigorev}, title = {SPbLA: The Library of GPGPU-powered Sparse Boolean Linear Algebra Operations}, journal = {Journal of Open Source Software} }
Copy citation string · Copy BibTeX  
Tags

sparse-matrix linear-algebra graph-analysis graph-algorithms nvidia-cuda opencl

Altmetrics
Markdown badge

 

License

Authors of JOSS papers retain copyright.

This work is licensed under a Creative Commons Attribution 4.0 International License.

Creative Commons License

Table of Contents
Public user content licensed CC BY 4.0 unless otherwise specified.
ISSN 2475-9066