UnlockNN: Uncertainty quantification for neural network models of chemical systems

Python PureBasic Submitted 03 September 2021Published 05 July 2022
Review

Editor: @osorensen (all papers)
Reviewers: @TahiriNadia (all reviews), @pmeier (all reviews), @Het-Shah (all reviews)

Authors

Alexander Moriarty (0000-0001-7525-1419), Kazuki Morita (0000-0002-2558-6963), Keith T. Butler (0000-0001-5432-5597), Aron Walsh (0000-0001-5460-7033)

Citation

Moriarty et al., (2022). UnlockNN: Uncertainty quantification for neural network models of chemical systems. Journal of Open Source Software, 7(75), 3700, https://doi.org/10.21105/joss.03700

@article{Moriarty2022, doi = {10.21105/joss.03700}, url = {https://doi.org/10.21105/joss.03700}, year = {2022}, publisher = {The Open Journal}, volume = {7}, number = {75}, pages = {3700}, author = {Alexander Moriarty and Kazuki Morita and Keith T. Butler and Aron Walsh}, title = {UnlockNN: Uncertainty quantification for neural network models of chemical systems}, journal = {Journal of Open Source Software} }
Copy citation string · Copy BibTeX  
Tags

graph neural networks uncertainty quantification machine learning material science chemistry

Altmetrics
Markdown badge

 

License

Authors of JOSS papers retain copyright.

This work is licensed under a Creative Commons Attribution 4.0 International License.

Creative Commons License

Table of Contents
Public user content licensed CC BY 4.0 unless otherwise specified.
ISSN 2475-9066