exoplanet: Gradient-based probabilistic inference for exoplanet data & other astronomical time series

Python Submitted 04 May 2021Published 22 June 2021
Review

Editor: @arfon (all papers)
Reviewers: @grburgess (all reviews), @benjaminpope (all reviews)

Authors

Daniel Foreman-Mackey (0000-0002-9328-5652), Rodrigo Luger (0000-0002-0296-3826), Eric Agol (0000-0002-0802-9145), Thomas Barclay (0000-0001-7139-2724), Luke G. Bouma (0000-0002-0514-5538), Timothy D. Brandt (0000-0003-2630-8073), Ian Czekala (0000-0002-1483-8811), Trevor J. David (0000-0001-6534-6246), Jiayin Dong (0000-0002-3610-6953), Emily A. Gilbert (0000-0002-0388-8004), Tyler A. Gordon (0000-0001-5253-1987), Christina Hedges (0000-0002-3385-8391), Daniel R. Hey (0000-0003-3244-5357), Brett M. Morris (0000-0003-2528-3409), Adrian M. Price-Whelan (0000-0003-0872-7098), Arjun B. Savel (0000-0002-2454-768X)

Citation

Foreman-Mackey et al., (2021). exoplanet: Gradient-based probabilistic inference for exoplanet data & other astronomical time series. Journal of Open Source Software, 6(62), 3285, https://doi.org/10.21105/joss.03285

Copy citation string · Copy BibTeX  
Tags

astronomy

Altmetrics
Markdown badge

 

License

Authors of JOSS papers retain copyright.

This work is licensed under a Creative Commons Attribution 4.0 International License.

Creative Commons License

Public user content licensed CC BY 4.0 unless otherwise specified.
ISSN 2475-9066