MUQ: The MIT Uncertainty Quantification Library

C++ Objective-C Submitted 26 February 2021Published 09 December 2021
Review

Editor: @pdebuyl (all papers)
Reviewers: @martinmodrak (all reviews), @georgiastuart (all reviews)

Authors

Matthew Parno (0000-0002-9419-2693), Andrew Davis (0000-0002-6023-0989), Linus Seelinger (0000-0001-8632-8493)

Citation

Parno et al., (2021). MUQ: The MIT Uncertainty Quantification Library. Journal of Open Source Software, 6(68), 3076, https://doi.org/10.21105/joss.03076

@article{Parno2021, doi = {10.21105/joss.03076}, url = {https://doi.org/10.21105/joss.03076}, year = {2021}, publisher = {The Open Journal}, volume = {6}, number = {68}, pages = {3076}, author = {Matthew Parno and Andrew Davis and Linus Seelinger}, title = {MUQ: The MIT Uncertainty Quantification Library}, journal = {Journal of Open Source Software} }
Copy citation string · Copy BibTeX  
Tags

Python Bayesian Inference Inverse Problems Uncertainty Quantification

Altmetrics
Markdown badge

 

License

Authors of JOSS papers retain copyright.

This work is licensed under a Creative Commons Attribution 4.0 International License.

Creative Commons License

Table of Contents
Public user content licensed CC BY 4.0 unless otherwise specified.
ISSN 2475-9066