hal9001: Scalable highly adaptive lasso regression in R

R C++ Submitted 24 June 2020Published 26 September 2020
Review

Editor: @mikldk (all papers)
Reviewers: @daviddewhurst (all reviews), @rrrlw (all reviews)

Authors

Nima S. Hejazi (0000-0002-7127-2789), Jeremy R. Coyle (0000-0002-9874-6649), Mark J. van der Laan (0000-0003-1432-5511)

Citation

Hejazi et al., (2020). hal9001: Scalable highly adaptive lasso regression in R. Journal of Open Source Software, 5(53), 2526, https://doi.org/10.21105/joss.02526

@article{Hejazi2020, doi = {10.21105/joss.02526}, url = {https://doi.org/10.21105/joss.02526}, year = {2020}, publisher = {The Open Journal}, volume = {5}, number = {53}, pages = {2526}, author = {Nima S. Hejazi and Jeremy R. Coyle and Mark J. van der Laan}, title = {`hal9001`: Scalable highly adaptive lasso regression in `R`}, journal = {Journal of Open Source Software} }
Copy citation string · Copy BibTeX  
Tags

machine learning targeted learning causal inference

Altmetrics
Markdown badge

 

License

Authors of JOSS papers retain copyright.

This work is licensed under a Creative Commons Attribution 4.0 International License.

Creative Commons License

Table of Contents
Public user content licensed CC BY 4.0 unless otherwise specified.
ISSN 2475-9066