shapr: An R-package for explaining machine learning models with dependence-aware Shapley values

R Python C++ Submitted 10 December 2019Published 05 February 2020
Review

Editor: @terrytangyuan (all papers)
Reviewers: @frycast (all reviews), @expectopatronum (all reviews)

Authors

Nikolai Sellereite (0000-0002-4671-0337), Martin Jullum (0000-0003-3908-5155)

Citation

Sellereite et al., (2020). shapr: An R-package for explaining machine learning models with dependence-aware Shapley values. Journal of Open Source Software, 5(46), 2027, https://doi.org/10.21105/joss.02027

Copy citation string · Copy BibTeX  
Tags

explainable AI interpretable machine learning shapley values feature dependence

Altmetrics
Markdown badge

 

License

Authors of JOSS papers retain copyright.

This work is licensed under a Creative Commons Attribution 4.0 International License.

Creative Commons License

Public user content licensed CC BY 4.0 unless otherwise specified.
ISSN 2475-9066