EspressoDB: A scientific database for managing high-performance computing workflows

Python Batchfile Submitted 06 December 2019Published 21 February 2020
Review

Editor: @gkthiruvathukal (all papers)
Reviewers: @remram44 (all reviews), @ixjlyons (all reviews)

Authors

Chia Cheng Chang (0000-0002-3790-309X), Christopher Körber (0000-0002-9271-8022), André 160 Walker Loud (0000-0002-4686-3667)

Citation

Chang et al., (2020). EspressoDB: A scientific database for managing high-performance computing workflows. Journal of Open Source Software, 5(46), 2007, https://doi.org/10.21105/joss.02007

@article{Chang2020, doi = {10.21105/joss.02007}, url = {https://doi.org/10.21105/joss.02007}, year = {2020}, publisher = {The Open Journal}, volume = {5}, number = {46}, pages = {2007}, author = {Chia Cheng Chang and Christopher Körber and André 160 Walker Loud}, title = {EspressoDB: A scientific database for managing high-performance computing workflows}, journal = {Journal of Open Source Software} }
Copy citation string · Copy BibTeX  
Tags

Django High-performance computing Lattice QCD

Altmetrics
Markdown badge

 

License

Authors of JOSS papers retain copyright.

This work is licensed under a Creative Commons Attribution 4.0 International License.

Creative Commons License

Public user content licensed CC BY 4.0 unless otherwise specified.
ISSN 2475-9066