FAT Forensics: A Python Toolbox for Implementing and Deploying Fairness, Accountability and Transparency Algorithms in Predictive Systems

Python Submitted 12 September 2019Published 19 May 2020
Review

Editor: @arokem (all papers)
Reviewers: @bernease (all reviews), @osolari (all reviews)

Authors

Kacper Sokol (0000-0002-9869-5896), Alexander Hepburn, Rafael Poyiadzi, Matthew Clifford, Raul Santos-Rodriguez (0000-0001-9576-3905), Peter Flach (0000-0001-6857-5810)

Citation

Sokol et al., (2020). FAT Forensics: A Python Toolbox for Implementing and Deploying Fairness, Accountability and Transparency Algorithms in Predictive Systems. Journal of Open Source Software, 5(49), 1904, https://doi.org/10.21105/joss.01904

@article{Sokol2020, doi = {10.21105/joss.01904}, url = {https://doi.org/10.21105/joss.01904}, year = {2020}, publisher = {The Open Journal}, volume = {5}, number = {49}, pages = {1904}, author = {Kacper Sokol and Alexander Hepburn and Rafael Poyiadzi and Matthew Clifford and Raul Santos-Rodriguez and Peter Flach}, title = {FAT Forensics: A Python Toolbox for Implementing and Deploying Fairness, Accountability and Transparency Algorithms in Predictive Systems }, journal = {Journal of Open Source Software} }
Copy citation string · Copy BibTeX  
Tags

Fairness Accountability Transparency Artificial Intelligence Machine Learning Software Python Toolbox

Altmetrics
Markdown badge

 

License

Authors of JOSS papers retain copyright.

This work is licensed under a Creative Commons Attribution 4.0 International License.

Creative Commons License

Table of Contents
Public user content licensed CC BY 4.0 unless otherwise specified.
ISSN 2475-9066