BoltzMM: an R package for maximum pseudolikelihood estimation of fully-visible Boltzmann machines

R C++ Submitted 14 January 2019Published 15 February 2019
Review

Editor: @yochannah (all papers)
Reviewers: @ja-thomas (all reviews), @schalkdaniel (all reviews)

Authors

Andrew T. Jones, Jessica J. Bagnall, Hien D. Nguyen (0000-0002-9958-432X)

Citation

Jones et al., (2019). BoltzMM: an R package for maximum pseudolikelihood estimation of fully-visible Boltzmann machines. Journal of Open Source Software, 4(34), 1193, https://doi.org/10.21105/joss.01193

@article{Jones2019, doi = {10.21105/joss.01193}, url = {https://doi.org/10.21105/joss.01193}, year = {2019}, publisher = {The Open Journal}, volume = {4}, number = {34}, pages = {1193}, author = {Andrew T. Jones and Jessica J. Bagnall and Hien D. Nguyen}, title = {BoltzMM: an R package for maximum pseudolikelihood estimation of fully-visible Boltzmann machines}, journal = {Journal of Open Source Software} }
Copy citation string · Copy BibTeX  
Tags

artificial neural network graphical model maximum pseudolikelihood estimation multivariate binary data probability mass function

Altmetrics
Markdown badge

 

License

Authors of JOSS papers retain copyright.

This work is licensed under a Creative Commons Attribution 4.0 International License.

Creative Commons License

Table of Contents
Public user content licensed CC BY 4.0 unless otherwise specified.
ISSN 2475-9066