ArviZ a unified library for exploratory analysis of Bayesian models in Python

Python R Submitted 23 December 2018Accepted 15 January 2019
Review

Editor: @arfon
Reviewers: @malmaud, @mattpitkin

Authors

Ravin Kumar (0000-0003-0501-6098), Colin Carroll (0000-0001-6977-0861), Ari Hartikainen (0000-0002-4569-569X), Osvaldo Martin (0000-0001-7419-8978)

Citation

Kumar et al., (2019). ArviZ a unified library for exploratory analysis of Bayesian models in Python. Journal of Open Source Software, 4(33), 1143, https://doi.org/10.21105/joss.01143
Copy BibTeX entry »

Tags

Bayesian statistics Visualization Probabilistic programming

Altmetrics
Markdown badge

 

License

Authors of JOSS papers retain copyright.

This work is licensed under a Creative Commons Attribution 4.0 International License.

Creative Commons License

Public user content licensed CC BY 4.0 unless otherwise specified.
ISSN 2475-9066