FixedPointFinder: A Tensorflow toolbox for identifying and characterizing fixed points in recurrent neural networks

Python Submitted 17 September 2018Published 01 November 2018
Review

Editor: @arokem (all papers)
Reviewers: @malmaud (all reviews)

Authors

Matthew D. Golub (0000-0003-4508-0537), David Sussillo (0000-0003-1620-1264)

Citation

Golub et al., (2018). FixedPointFinder: A Tensorflow toolbox for identifying and characterizing fixed points in recurrent neural networks. Journal of Open Source Software, 3(31), 1003, https://doi.org/10.21105/joss.01003

@article{Golub2018, doi = {10.21105/joss.01003}, url = {https://doi.org/10.21105/joss.01003}, year = {2018}, publisher = {The Open Journal}, volume = {3}, number = {31}, pages = {1003}, author = {Matthew D. Golub and David Sussillo}, title = {FixedPointFinder: A Tensorflow toolbox for identifying and characterizing fixed points in recurrent neural networks}, journal = {Journal of Open Source Software} }
Copy citation string · Copy BibTeX  
Tags

recurrent neural networks fixed point optimization nonlinear dynamical systems Tensorflow

Altmetrics
Markdown badge

 

License

Authors of JOSS papers retain copyright.

This work is licensed under a Creative Commons Attribution 4.0 International License.

Creative Commons License

Table of Contents
Public user content licensed CC BY 4.0 unless otherwise specified.
ISSN 2475-9066