TensorInference: A Julia package for tensor-based probabilistic inference

Julia Submitted 22 July 2023Published 03 October 2023
Review

Editor: @osorensen (all papers)
Reviewers: @emstoudenmire (all reviews), @gdalle (all reviews)

Authors

Martin Roa-Villescas (0009-0009-0291-503X), Jin-Guo Liu (0000-0003-1635-2679)

Citation

Roa-Villescas et al., (2023). TensorInference: A Julia package for tensor-based probabilistic inference. Journal of Open Source Software, 8(90), 5700, https://doi.org/10.21105/joss.05700

@article{Roa-Villescas2023, doi = {10.21105/joss.05700}, url = {https://doi.org/10.21105/joss.05700}, year = {2023}, publisher = {The Open Journal}, volume = {8}, number = {90}, pages = {5700}, author = {Martin Roa-Villescas and Jin-Guo Liu}, title = {TensorInference: A Julia package for tensor-based probabilistic inference}, journal = {Journal of Open Source Software} }
Copy citation string · Copy BibTeX  
Tags

probabilistic graphical models tensor networks probabilistic inference

Altmetrics
Markdown badge

 

License

Authors of JOSS papers retain copyright.

This work is licensed under a Creative Commons Attribution 4.0 International License.

Creative Commons License

Table of Contents
Public user content licensed CC BY 4.0 unless otherwise specified.
ISSN 2475-9066