CRE: An R package for interpretable discovery and inference of heterogeneous treatment effects

R Submitted 17 March 2023Published 15 December 2023
Review

Editor: @spholmes (all papers)
Reviewers: @salleuska (all reviews), @carlyls (all reviews)

Authors

Riccardo Cadei (0000-0003-2416-8943), Naeem Khoshnevis (0000-0003-4315-1426), Kwonsang Lee (0000-0002-5823-4331), Daniela Maria Garcia (0000-0003-3226-3561), Falco J. Bargagli Stoffi (0000-0002-6131-8165)

Citation

Cadei et al., (2023). CRE: An R package for interpretable discovery and inference of heterogeneous treatment effects. Journal of Open Source Software, 8(92), 5587, https://doi.org/10.21105/joss.05587

@article{Cadei2023, doi = {10.21105/joss.05587}, url = {https://doi.org/10.21105/joss.05587}, year = {2023}, publisher = {The Open Journal}, volume = {8}, number = {92}, pages = {5587}, author = {Riccardo Cadei and Naeem Khoshnevis and Kwonsang Lee and Daniela Maria Garcia and Falco J. Bargagli Stoffi}, title = {CRE: An R package for interpretable discovery and inference of heterogeneous treatment effects}, journal = {Journal of Open Source Software} }
Copy citation string · Copy BibTeX  
Tags

causal inference heterogeneous effect interpretability machine learning

Altmetrics
Markdown badge

 

License

Authors of JOSS papers retain copyright.

This work is licensed under a Creative Commons Attribution 4.0 International License.

Creative Commons License

Table of Contents
Public user content licensed CC BY 4.0 unless otherwise specified.
ISSN 2475-9066