itwinai: A Python Toolkit for Scalable Scientific Machine Learning on HPC Systems

Python Submitted 02 September 2025Published 20 January 2026
Review

Editor: @boisgera (all papers)
Reviewers: @yewentao256 (all reviews), @xiazeyu (all reviews)

Authors

Matteo Bunino (0009-0008-5100-9300), Jarl Sæther (0009-0002-7971-2213), Linus Eickhoff (0009-0006-6691-2821), Anna Lappe (0009-0009-4804-4188), Kalliopi Tsolaki (0000-0002-3192-4260), Killian Verder (0009-0006-4819-3229), Henry Mutegeki (0009-0001-9940-1167), Roman Machacek (0009-0007-9976-4420), Maria Girone (0000-0003-0261-8392), Oleksandr Krochak (0009-0007-2245-9452), Mario Rüttgers (0000-0003-3917-8407), Rakesh Sarma (0000-0002-7069-4082), Andreas Lintermann (0000-0003-3321-6599)

Citation

Bunino et al., (2026). itwinai: A Python Toolkit for Scalable Scientific Machine Learning on HPC Systems. Journal of Open Source Software, 11(117), 9409, https://doi.org/10.21105/joss.09409

@article{Bunino2026, doi = {10.21105/joss.09409}, url = {https://doi.org/10.21105/joss.09409}, year = {2026}, publisher = {The Open Journal}, volume = {11}, number = {117}, pages = {9409}, author = {Bunino, Matteo and Sæther, Jarl and Eickhoff, Linus and Lappe, Anna and Tsolaki, Kalliopi and Verder, Killian and Mutegeki, Henry and Machacek, Roman and Girone, Maria and Krochak, Oleksandr and Rüttgers, Mario and Sarma, Rakesh and Lintermann, Andreas}, title = {itwinai: A Python Toolkit for Scalable Scientific Machine Learning on HPC Systems}, journal = {Journal of Open Source Software} }
Copy citation string · Copy BibTeX  
Tags

Digital Twins Distributed Training Hyperparameter Optimization High Performance Computing

Altmetrics
Markdown badge

 

License

Authors of JOSS papers retain copyright.

This work is licensed under a Creative Commons Attribution 4.0 International License.

Creative Commons License

Table of Contents
Public user content licensed CC BY 4.0 unless otherwise specified.
ISSN 2475-9066