exa-AMD: A Scalable Workflow for Accelerating AI-Assisted Materials Discovery and Design

Python Submitted 04 July 2025Published 17 November 2025
Review

Editor: @espottesmith (all papers)
Reviewers: @yw-fang (all reviews), @PatrickJTaylor (all reviews), @alchem0x2A (all reviews)

Authors

Maxim Moraru, Weiyi Xia, Zhuo Ye, Feng Zhang, Yongxin Yao, Ying Wai Li, Cai-Zhuang Wang

Citation

Moraru et al., (2025). exa-AMD: A Scalable Workflow for Accelerating AI-Assisted Materials Discovery and Design. Journal of Open Source Software, 10(115), 8879, https://doi.org/10.21105/joss.08879

@article{Moraru2025, doi = {10.21105/joss.08879}, url = {https://doi.org/10.21105/joss.08879}, year = {2025}, publisher = {The Open Journal}, volume = {10}, number = {115}, pages = {8879}, author = {Moraru, Maxim and Xia, Weiyi and Ye, Zhuo and Zhang, Feng and Yao, Yongxin and Li, Ying Wai and Wang, Cai-Zhuang}, title = {exa-AMD: A Scalable Workflow for Accelerating AI-Assisted Materials Discovery and Design}, journal = {Journal of Open Source Software} }
Copy citation string · Copy BibTeX  
Tags

Machine learning Material databases Heterogeneity HPC workflows

Altmetrics
Markdown badge

 

License

Authors of JOSS papers retain copyright.

This work is licensed under a Creative Commons Attribution 4.0 International License.

Creative Commons License

Table of Contents
Public user content licensed CC BY 4.0 unless otherwise specified.
ISSN 2475-9066