maze-dataset: Maze Generation with Algorithmic Variety and Representational Flexibility

Python Jupyter Notebook Submitted 09 April 2025Published 21 October 2025
Review

Editor: @ekourlit (all papers)
Reviewers: @amcandio (all reviews), @Jemoka (all reviews)

Authors

Michael Igorevich Ivanitskiy (0000-0002-4213-4993), Aaron Sandoval (0009-0002-8380-6140), Alexander F. Spies (0000-0002-8708-1530), Tilman Räuker (0009-0009-6321-4413), Brandon Knutson (0009-0004-8413-0239), Cecilia Diniz Behn (0000-0002-8078-5105), Samy Wu Fung (0000-0002-2926-4582)

Citation

Ivanitskiy et al., (2025). maze-dataset: Maze Generation with Algorithmic Variety and Representational Flexibility. Journal of Open Source Software, 10(114), 8633, https://doi.org/10.21105/joss.08633

@article{Ivanitskiy2025, doi = {10.21105/joss.08633}, url = {https://doi.org/10.21105/joss.08633}, year = {2025}, publisher = {The Open Journal}, volume = {10}, number = {114}, pages = {8633}, author = {Ivanitskiy, Michael Igorevich and Sandoval, Aaron and Spies, Alexander F. and Räuker, Tilman and Knutson, Brandon and Behn, Cecilia Diniz and Fung, Samy Wu}, title = {maze-dataset: Maze Generation with Algorithmic Variety and Representational Flexibility}, journal = {Journal of Open Source Software} }
Copy citation string · Copy BibTeX  
Tags

machine learning distributional shift maze generation datasets

Altmetrics
Markdown badge

 

License

Authors of JOSS papers retain copyright.

This work is licensed under a Creative Commons Attribution 4.0 International License.

Creative Commons License

Table of Contents
Public user content licensed CC BY 4.0 unless otherwise specified.
ISSN 2475-9066