ReadmeReady: Free and Customizable Code Documentation with LLMs - A Fine-Tuning Approach

Python Jupyter Notebook Submitted 13 November 2024Published 12 April 2025
Review

Editor: @crvernon (all papers)
Reviewers: @Manvi-Agrawal (all reviews), @camilochs (all reviews)

Authors

Sayak Chakrabarty (0009-0004-6179-389X), Souradip Pal (0000-0002-5781-3032)

Citation

Chakrabarty et al., (2025). ReadmeReady: Free and Customizable Code Documentation with LLMs - A Fine-Tuning Approach. Journal of Open Source Software, 10(108), 7489, https://doi.org/10.21105/joss.07489

@article{Chakrabarty2025, doi = {10.21105/joss.07489}, url = {https://doi.org/10.21105/joss.07489}, year = {2025}, publisher = {The Open Journal}, volume = {10}, number = {108}, pages = {7489}, author = {Sayak Chakrabarty and Souradip Pal}, title = {ReadmeReady: Free and Customizable Code Documentation with LLMs - A Fine-Tuning Approach}, journal = {Journal of Open Source Software} }
Copy citation string · Copy BibTeX  
Tags

python machine learning large language models retrieval augmented generation fine-tuning

Altmetrics
Markdown badge

 

License

Authors of JOSS papers retain copyright.

This work is licensed under a Creative Commons Attribution 4.0 International License.

Creative Commons License

Table of Contents
Public user content licensed CC BY 4.0 unless otherwise specified.
ISSN 2475-9066